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A Twist  on Chiral Pot ts  ~ 

Brian  D a v i e s  1 

Received July 11, 1990; final August 21, 1990 

We show that the chiral Ports model may be formulated so that the rapidity 
lines carry a second integer variable--an increment or "twist" in each bond 
crossing it. This modification does not affect those properties of the chiral 
Potts model which lead to integrability, since it is equivalent to one of the 
automorphisms allowed for in the theory. In particular, transfer matrices still 
form commuting families and still satisfy hierarchies of functional equations. 
Surprisingly, the superintegrable case with twists retains the special algebraic 
properties which lead to its Ising-like spectra. The formalism should be useful 
for considering systems with twisted boundary conditions or embedded inter- 
faces. 

KEY WORDS: Boundary conditions; chiral Potts; exact solution; statistical 
mechanics. 

1. I N T R O D U C T I O N  

Recent ly much  progress  has been made  in the solut ion of  the chiral  Po t t s  
model .  This is a class of  N-s ta te  two-d imens iona l  lat t ice models  for which 
solut ions  of  the s tar - t r iangle  re la t ion (1~ have been found. I t  is Z N  sym- 
metric,  but  chira l ly  asymmetr ic :  tha t  is, the Bol tzmann  weight for an 
ad jo in ing  pa i r  of spins n, n '  depends  only on the difference n -  n', bu t  is 
a symmet r i c  under  in terchange of  n, n '  (mod  N). The s tar- t r iangle  p rope r ty  
implies,  as an immedia te  corol lary ,  that  there are commut ing  families of 
transfer  matr ices  pa rame t r i zed  by some " rap id i ty"  variables and also a 
" tempera ture - l ike"  variable.  Fur ther ,  each commut ing  family generates  an 
infinite sequence of  conserved quanti t ies ,  the simplest  of  which is an 
N-s ta te  spin chain  H a m i l t o n i a n  involving only nearest  ne ighbor  inter-  
actions. F o r  a special  choice of  rap id i ty  v a r i a b l e s - - t h e  "super in tegrable"  
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case there is an underlying Lie algebra identical with the algebra whereby 
Onsager solved the Ising model, <2~ and this has led to many new results in 
this case. (3 7> 

We recall some basic results for the chiral Potts model. (1'8~ The 
parametrization employs algebraic curves satisfying the homogeneous 
equations 

N . . . .  'V k.JN X=kc~,  k 2 q - k ' 2 =  1 (1) ap +tcop = up, k'a N +bp 

There are two types of interaction between neighboring spins, each labeled 
by a pair of rapidities--see Fig. 1. The weights are defined by 

n 

Wpq(rl)/Wpq(O) = I-[ ( d p b q  - -  apCqcok)/(bpdq - Cpaqco k) 

k=l (2) 

l~Zpq(n)/l~pq(O) = f i  ( coapdq-  dpaqcok) / (Cpbq-  bpcq co\) 
k = l  

where co = exp(-2rci/N). The convention of Fig. 1, including the chirality 
which is implicit in it, is most important in what follows. For I't/-pq(n) the 
arrow on the bond points to the right of the rapidity p, while q points to 
the left o fp .  For l~pq(n) both arrows point to the left ofp.  Thus, there is 
no ambiguity in assigning spins and Boltzmann weights once the rapidity 
lines are given, and there will be no ambiguity in assigning "twists" to 
bonds. There are various automorphisms of the algebraic curves (1), 
notably 

R: aRq , bRq , CRq , dgq = bq, O)aq, dq, Cq 

T: arq, brq, Crq, dTq = coaq, bq, coCq, dq (3) 

U: agq , bUq , Cuq , duq = coaq, bq, Cq, dq 

n 2 

n l O  

\ / 
\ / 
/ \  ~ n 2 

/ \ 
/ \ 

P q 

Wpq (n 1- n 2 ) 

\ / 

/ 
/ \ 

/ \ 

P q 

I I  1 

Wpq(n~-  n 2 ) 

Fig. 1. Bo l t zmann  weights  for the chiral  Pot ts  model.  
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The weights satisfy the star-triangle relation, shown diagramatically in 
Fig. 2. We attach an extra variable, to be explained below, to each rapidity 
line, so that the relation reads 

N 
W(pnp)(rnr)(nl -- n) ~T~7(qnq)(rnr)(l'l 2 -- n) HA (pnp)(qnq)(n -- n3) 

n=l 

= RpqrW(pnp)(rnr)(l 'lz-n3) W(v,q~(r,r)(nl-n3) m(pnp)(qnq)(n 1 --/72) (4) 

A second form results from negating all arrows (or equivalently, all spins). 
The difference between the two is in the "net circulation" of rapidity about 
the star point. We construct transfer matrices for transfer in the diagonal 
direction as shown in Fig. 3. This follows the convention of Baxter eta/., (9) 
a paper to which we shall refer as FR. We shall refer to equations from 
Baxter et al. by attaching the prefix FR to an equation number. The lattice 
is wound on a cylinder, so that the last site in each row of L sites is 
adjacent to the first. The standard use of the star-triangle relation is as 
follows: Regarded as N x N  matrices, the Boltzmann weights Wqr(n-n') 
are invertible, hence we may insert a suitably chosen matrix multiplied by 
its inverse into the product of two transfer matrices to produce a star point. 
On using the star-triangle relation 2L times, we find that transfer matrices 
satisfy the commutation relation that Tq Tr is a scalar multiple of Tr ~?q 
provided only that the vertical rapidities all match. This is Eq. (FR2.32b). 
The product T q T  r is a "checkerboard" transfer matrix: these form two- 
parameter commuting families. The commutation relation (Tq f 'r)(Tq,  f'r') 
=(Tq, frr,)(TqTr) [Eq. (FR2.33)] for this checkerboard model may be 
demonstrated diagramatically by repeated use of the star-triangle relation 
exactly as in Fig. 9 of ref. 10 for the checkerboard Ising model. Because the 
star-triangle and triangle-star transformations are paired, there is exact 
commutation. Each commuting family is labeled by the values of k', q, r, 

~ n3 

" ~  -. t "7 ' 1  
n 1 C~ l " " x  % n ]  

pnp ~ k r n r  

qnql l ~b TM 
n 2 

" ~ t  "" [ rn~r 

,qnq 
2 

Fig. 2, Star-triangle relation for the chiral Potts model. 
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Wpq 

] (51 I (Y2 ] (33 I 

T Pq 

I I 
~1 (32 (J3 (Y4 

P l n l  P2n2  P3n3  P4n4  PSn5  P 6 n 6  

Fig. 3. The two transfer matrices T and 2f'. 

and the 2L vertical rapidities. Moreover, the Hermitian adjoint of a matrix 
(Tq Tr) is in the same commuting family as (Tq 1"~) because of the properties 
of the weights, so they are normal (diagonable) matrices. 

Functional relations play a crucial part in the analysis of the chirat 
Potts model. (9'11-13) The derivations of FR involve some very long com- 
putations, and are very general indeed, since they apply to row transfer 
matrices in which the vertical rapidities may be chosen independently--the 
general "inhomogeneous" case. Initial interest in the physical properties 
of a solvable model is usually for the homogeneous case with periodic 
boundary conditions, and this is already very complicated for the chiral 
Potts model. For finite-size calculations, and also calculations of surface 
properties, one may be interested in the homogeneous case with one or 
more columns of dislocations. (14-~8) A typical dislocation would be a 
"twist" in the boundary condition, identifying the spin variable at site L 
with that at site 1 plus an integer twist. The purpose of this paper is to 
point out that such generalizations are already contained in FR, and to 
explicitly exhibit the effect of twisting the bonds, particularly the effect on 
the "tau" matrices. Specifically, we see that chiral Potts transfer matrices 
form commuting families even when arbitrary increments in the spin 
variable are associated with the rapidities, and that the functional relations 
for transfer matrices of the chiral Potts model include this general case. 
These relations are of great importance for calculating eigenvalues and 
other properties of the model. (~2']3) 

Commuting families of transfer matrices generate Z~ spin-chain 
Hamiltonians of the form H = A o + kA  1, with which they commute. In the 
homogeneous superintegrable case with periodic boundary conditions, it 
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is known that the two-component operators Ao, A~ of the Hamiltonian 
satisfy the Dolan-Grady condition (19~ and so generate an Onsager 
algebra. (7) This is a Lie algebra whose semisimple part is the direct sum of 
the algebra su(2), which accounts for the Ising-like property--the "super- 
integrability." In the inhomogeneous case this property is certainly not 
true, even for the Ising model. However, we shall show that Ao, A1 satisfy 
the Dolan-Grady condition with arbitrary twists provided that the 
rapidities are otherwise homogeneous. This surprising result confirms some 
conjectures about relations between the spectra of these ZN Hamiltonians 
in the various sectors made by von Gehlen and Rittenberg (2~ on the basis 
of numerical calculations. It should also have further applications to the 
superintegrable case. 

2. TWISTED BONDS 

Referring to Figs. 1 and 2, attach a second (integer) variable rtp to 
each rapidity line p, which will become a twist in the bonds crossed by that 
line. Observe that the star-triangle relation (4) is a set of N 3 equations 
labeled by the integers n 1, n2, n3. They are invariant under the replacement 
ni ~ ni +np. Such a replacement may be absorbed into the definition of the 
Boltzmann weights, Thus, we write (pnp) in place of p, and define 

W(pnp)(qnq)(n ) = mpq(l'l -.~ rtp -k//q),  W(pnp)(qnq)(n) = VVpq(n - n p  + nq) (5) 

From Eqs. (2) and (3), we see that there is an equivalent definition which 
uses the automorphism T: 

W(pnp)(qnq)(n) = WT.pp, T%q(n), HZ(pnp)(qnq)(n) = lTgr.~p, rOqq(n) (6) 

However, the notation of Eq. (5) is chosen to try to maintain consistency 
with the conventions of FR while explicitly exhibiting the twists. In general, 
we label a rapidity line by the pair (p, rip), with the convention that (p, 0) 
is just written as p. Also, where the rapidities pj are labeled by an integer, 
we write n i for the corresponding twist variable. The integer attached to 
each rapidity line indicates the effect is has on the spin difference: this effect 
depends on whether the arrow joining the two spins crosses the rapidity 
from right to left or vice versa. It obviously makes no difference to the star- 
triangle relation or to the commutation of transfer matrices. Transfer 
matrices with different twist sets nj, j =  1,..., 2L, are not equivalent under 
similarity transformation, as is evident already in the Ising case, where one 
antiferromagnetic bond changes the entire spectrum. There is no point in 
attaching a twist variable to a horizontal rapidity; this is equivalent to mul- 
tiplying the transfer matrix by the spin shift operator [see Eq. (FR 2.43)]. 
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The derivations of FR for the functional relations involve some very 
long computations. Most of them may be taken over directly here: the 
main difference is that it is essential to consider the general inhomogeneous 
case, with the extra factors introduced by the twist variables. The "first 
hierarchy" of functional relations is related to particular combinations of 
the automorphisms (3). Specifically, we denote by q ~ q ( k ,  I) the auto- 
morphism [Eq. (FR 2.37)] 

ao(k,t ), bo(k,l ~, Cq(k,l), dq(k,z)= cokbq, cO'aq, dq, Cq (7) 

The checkerboard transfer matrix TqT r is built up using star weights 
shown in Fig. 4. We have 

L 

(TqL) ,~ '=  [ I  U(j)qr(aj, aj+,, aj+, ,  aj) (8) 
j = l  

where the label (j) is an abbreviated notation for the rapidity pair 
(pn)2j_l(pn)2 j. Using the label j for P2j ,P2j, U(j)qr((Tj, O'j+l, O'J+ 1, O ' } )  is 
related to the star weight Ujqr(aj, %+ 1, a}+ 1, a}) of FR by 

-=mjqr(ffjq-n2j l,{7j+t--n2j, ff}+l--n2/,G;q-n2j 1) (9) 

Now let r=q(k,  l), where the integers k, l satisfy 1 <~k+l<~N, k>>.O, 
l > 0, and let ~kt denote the set of consecutive integers { - k ..... l -  1 }. Then 
it is shown in FR that the star weights have the property 

U(j)qr(aj, ffj+l, Oj+l,a;)=O if aj-ajeGt and aj+1-a~+1r 
(lo) 

] A ~ aJ+l 

- -  - -  - -  r 

1 I 

i % - - q  c#, 
I I 

~j  cj+ 1 
(Pn)2j_l (Pn)2j 

, A A 

=N x 

] 
(pn)j. 1 (Pn)2j 

G r 

j+l 

r 

--q 

j+l 

Fig. 4. Star weight of Eq. (9). 
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The first hierarchy stems from this fact, which implies the fundamental 
decomposition [Eq. (FR 3.18)] that Tqf'r is the sum of two matrices j-(k,o q 
and ~Yq'~(k'Z) with 

(f/-(k,O~ , = 0  unless aj--aje~kZ Vj - -  q Jet5 
(11) 

(ff-(k,O~ = 0  unless a 1 - a j ~ k z  Vj q ]trt~' 

The utility of this relation depends on calculating the entries of the 
matrices ~(k'Z)q . A S  in FR, the matrices 3 --(k,z)q and y~(k,t)q are in fact 
appropriately normalized versions of the same set of "tau" matrices ~(~) ~ k,q' 
namely 

"~q~(k'Z)aT'(k'Z)--l~(k+l)'r(k+~/q - - * * q  ~k,q l), A,q~ k + l ) ' c ( N ~ / q  --l,r k--O (12) 

The constant factors are obtained by modifying FR to include the twists. 
Working through Eqs. (FR 3.2(~40), it may be shown that the star weight, 
with aj, aj+ 1, a~+ 1, aj restricted to an allowed configuration for ~--(k,t) is q ' 
given by 

U(j)qr(tTj,  o - j +  1,  o - j +  1 ,  o - j )  

= o ) - k ( o - j  o ' j + l + n 2  j l+n2j)(bq/dq)aj-tyj+l+a'j+ l ty'j 

k + l - 1  
X kl --kl - k + l  ' tlq, k+l,  a j §  ' k ~-2p2j lq~'2p2jqhp21q ~ o.)m(aj--aj+l--k+n2j l+n2j) ~ 1+  

m = O  ~q,k + Lrn 

xFm,_lq(k +l, a j -a j  +k,m)Fp2jq(k +l, aj+l-aj+l +k,m) (13) 

and when restricted to an allowed configuration for ~q~(k'~ it is 

Uu~qr(~j, ai+1, ~j+l, ~j) 
= (.ol((rj--a'j+l+n2j-l+n2s)(Cq/aq)aj o'j+ 1 + aj+ 1 -- o- ~ 

X kZ --kl k + l  N- -k - - l - -1  , ~r ,N- -k  l, aj--aj l 
f f2p2j- lq~p2jqhp2j- tq  ~ (2) m(~yj-aJ+l+z+n2j-l+n2j) 

m = 0  ~r ,N--k - - l ,m 

• F~,_~(N- k -  t, ~j-~j-I,m)F~,~(N-K-I, ,rj+ 1-,~+ 1-/ ,  m) 

(14) 

--kl The functions I2~q, ff2pq are defined in (FR 3.24), hJq,  flJpq in (FR 3.35, 36), 
t/qd, m in (FR 3.37), and Fpq(j, t7, m) in (FR 3.38). The differences intro- 
duced by the twist variables are seen in the exponents of o9. Thus, the "first 
hierarchy" [Eq. (FR 3.46)] is unchanged in form: 

"~k'l>ZqTr=n(k+l>~<k+l)"t-H~k+l)T<N-k-l)q "k,q " --l,r (15) 

822/62/1-2-7 
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as are the constant factors: 
L 

(NQkt ~ t  ~ i 

j=l  (16) 
L L 

(n) __ - ( n )  
n q  - - H  hp2j_l,q , n  a q  = I - I  hp2y,q-n 

j = l  j = l  

However, the definition of the "tau" matrices changes to 
n - - I  L 

(.(n)~ E ~ k.n aj, aj) (17) ~k, q l a n , =  S( j )q (mj  1, mj ,  
ml,...,mL = 0 j =  1 

where 

S k , ~  ( m  

= (0 -m)  l(aj--n2)-2)+mj(cYj+n2) l)--k(mj+n2j 2+n22-1 )  

qq, n, rrj--aj +k , , 
X Fp2j_2q(n, fly -- ryj + k, m j _  1) Fpz; zq( n, rzj - ~rj + k, m i )  

t~q,n,mj-I 

(18) 
S~'" ~m mj, aj, aj) is the vertex weight for an n-state by N-state (j)qt, j - -  1, 
vertex model shown in Fig. 5. This is the viewpoint of Bazhanov and 
Stoganov/zl) By convention, , (o)=0.  For n =  1, Eq. (FR 3.47b) becomes ~k,q 

2L *(~)- (lrlj=l ~o "~X) k, where X is the shift operator (FR 2.42). The shift 
~ k,q - -  
property (FR 3.51) is modified to 

e)~JX .(~) - .(~) (19) ~ k,q - -  ~ k -  1,q 

1 
A 

~ [ - -  

I 

] 
(Pn)2j_ 2 

I 

I 

(pn) 
2j-1 

m r 

m j  

m m q 

Fig .  5. V e r t e x  w e i g h t  o f  Eq .  (18) .  
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The arguments leading to (FR 3.50) and (FR 3.51) still hold, that is, we 
have the commutation relations r,(-) (,') L~k,q' Tk',q'] =0, [Tqf',, O~.qj~(")l =0.  

The proof of the "second hierarchy" stems from constructing vectors of 
the product form Q(erl,..., erL) = g~(a~).., gc(aC) with the property that 

(2) ,, (Tgk, qQ)(erl  ..... GL) = Q'(al ..... ac) + Q (al ..... err) (20) 

The method originates in Baxter's papers on the eight-vertex model (22) and 
depends on the fact that the "tau" matrix is a trace over the "auxiliary 
variables" mj. Therefore the left-hand side of (20) may be written as 

(2) (rk, qQ) =Tr[GI(al) . . .GL(aL)],  where Gs(as) is a 2 •  matrix. To 
recover the right-hand side of (20), one looks for matrices Ps of the form 

pj= (21) 
- r j  

such that Pjl ,Gj(erj)Pj is upper triangular, while the functions &(aj) 
satisfy the periodicity condition & ( % + N ) =  gJ(ers). Detailed working is 
given in Eqs. (FR 4.1)-(FR 4.19): here we simply note modifications needed 
to accommodate the twists. The most important is that the condition for 
triangularity, Eq. (FR 4.1 lb), is changed to 

gj(erj...~ k )  fodp2j_~tq--fo~s+nzJ-lap2j_lrj)  

/ 

( ap2 , -2 - -~  - 2 r j - 1  

X ~kCP2j-2tq -O')a) n2)-2 lbp2j_2rj_l  j 
(22) 

with tq = aqbq/cqdq.  Using this in the periodicity condition gives the same 
quadratic equation for r N, with the same solution set 

rj = (aq/dq)  091 /~s ( 2 3 )  

Since the integers flj are arbitrary, there are a total of N c independent solu- 
tions for rj. The solutions for the gj(erj) are modified by the twists in a way 
which is consistent with (5), that is, on using Eq. (FR 4.19a) 

&(erj+k)= 
(Dk(n21- 2 + n2j- 1 ) b pzj_ 2 b p2j- 1 

Cp2j - 2 Cp2j- l 

~/r<p)2j_2, mq(~j -- [~j-- I ) W(p)2j_l, mq(C~j -- ~j) • 
W(p~2,_2, uq(0) w(p~2j_ ~, uq(0) 

(24) 
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For each solution of (23) we may calculate gj (%)= Goo(%)- rjGol(Oj) and 
gj'(aj) = Gn(oj)  + rj_ ~ Gm(oj) as 

k(n2j 2+n2j-l) (bp__~I_l)(aP2a-2 1 -  tp2j-2tq)" 

/b  d - co  ~ ~-&+~c a \ p2j i q p2j-I q~ g j ( q ~ - k )  
x \ap~,-~dq -~~176 :-~,-~dp:~ :aqJ 

(25) 
gj,(o.j) = co-(~ 1)(~2j 2+n2j-,) (bp__~j_2)(aP2J-~ l~ 

~ % ,   Cqh 
X \ dp2j_,bq__O~a,+n2j_ 1 B, apz,_,Cq j 

which is again consistent with the definitions (5). These results give us the 
extra factors needed to express &(oj + k), gj (rzj), gj'(oj) in terms of chiral 
Potts weights using Eqs. (FR 4.19) and therefore to write the modified form 
of the identity (FR 4.20) as 

(j~=l. YP2j-2YP2j-II'c(2)('~[ {(j),Uq / k,q kj].~ O')"Jx)k Tuq 

(j~= (YP2'-'z~-Xq)(tp2'-2--tq)~ 

= 1 (Xp2 j ,--Xq) r ,] Tq 

L (Yp2~-2- ~ fOtq)~[ll ~ co nj~ 
"~- (j =I~I 1 VpT_ 1 ~-'-~q )~( j)72; ,]~)=11 ) ZR2q (26) 

where Xp = ap/dp, yp = bp/cp, and ~(j)q = ff'(p)2j_2, q(O) W(p)2j_l,q(O ). Now the 
remaining arguments of FR go through as before, and the form of the 
"second hierarchy" of functional equations is 

"r(n)(t ~ ~-(2)[tnn--llq ) o)nJ~ ~k ~q! ~m tw 

C; ) =z(oo n ltq) o) nj z~_ll)(tq)+Z2+l)(tq) (27) 

The function Z(tq) is unchanged from Eq. (FR 4.23), namely 

o91.tp2j_ 2~mj l( tp2j_2 - tq)( tp2j_ 1 - tq) 
Z(tq) j=lll (Yp2j-2 Yp2j- 1) 2 (28) 

with #p = dp/cp. 
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3. SUPERINTEGRABIL ITY  WITH TWISTS 

A commuting family of transfer matrices generates an infinite sequence 
of constants of motion. The simplest case is when all vertical rapidities are 
equal, in which case the Hamiltonian is given in ref. 1. This Hamiltonian 
comes from the term linear in q - p  in the Taylor expansion of Tq about 
q = p. It is expressed in terms of a set of operators Xj, Zj which act at site 
j, and satisfy the ZN commutat ion relations 

X u = L Z u = I, Z j X j  = coXjZj (29) 

A convenient matrix representation is given by 

( X j ) k t = 3 k a + l ( m O d N ) ,  (Zj)kl=6K, tco ~, O < . k , l < N  (30) 

Here we will keep the rapidities all equal to p while allowing for arbitrary 
twists nj. For  the case of no twists, the Hamiltonian may be read off from 
Eqs. (25) and (26) of ref. 1 as 

L N- -1  

a f  = - Z Z (~X; +~nZ~Zf+~l) (31) 
j = l  n = l  

where 

expEi(2n - N)  O/N] k' expEi(2n - N)  ~/N]  (32) 
o:,, = sin(tin~N) ' ~" = sin(xn/N) 

and 

2i0 _ co ~/2 ap Cp "2iq~ co 1/2 ap dp ~.~, . . . .  , exp = (33) e ~  
N bp dp N bp Cp 

In order to adapt  (31) to our purpose, we need to be careful. The problem 
is that Tq is not a one-parameter commuting family, r a t he r  Tq T,. is a two- 
parameter  commuting family. When q = p and r = Rp, Tq Tr is a constant 
multiple of the identity matrix: the first term in the expansion about q = p, 
keeping r = Rp, gives the Hamiltonian (31). With no twists this distinction 
is of no consequence. 

To utilize (31), we must know how the constants a n and ~n are related 
to the Taylor expansion of the Boltzmann weights. Write 

Wpq(n) = Wpp(O) + (q - p)  Wgp(n) 

Wpq(n) = Wpp(O) ~o  + (q - P) W'pp(n) 
(34) 
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in the expansion of T u fer about q = p; then it is clear from (30) that 

N 1 
! - - t  -- Wpp(n)/Wpp(O)= ~ COk'C~k, Wpp(n)/Wpp(O)=~2. (35) 

k = l  

The Hamiltonian is the sum of two terms, which come from the expansion 
of W(p)q(n) and W(p)q(rl), respectively, in the entries of (Tq Tr)~'. The term 
W(p)q(n) gives a diagonal entry W'pp(~j-a'  _ _ j+l+n2j_l+n2j)f~j_~j+~ and 
W(p)q(rt) gives the off-diagonal entry W'pp(aj-aj).  Using (35), this implies 
the replacement e,~e)'(~2,-~+"2,)c% in (31), while ~, remains the same. 
Consequently, the Hamiltonian becomes 

L N - - I  

- n + n z j ) T n g - n  ~ (36) dZ~f = --  2 2 ( ~ n ~  "-~-O~n(Dn(n2J-I ~ j ~ j + l !  
j = l  n = l  

Our main interest here is in the "superintegrable" case, which obtains 
when ~b = q~ = re/2, or alternatively p =/5(0, 0). Write ~vf = oUfo + k'Jf~ ; then 
we shall show that the two operators ~o, ~ satisfy the Dolan-Grady 
conditions 

[gf0, [oVfo, [~o, ~r ] ] = 4N2[~o, ~ ] ,  

[~f~, [~1, [~f~, oVfo] ] ] = 4N2[~1, ~o] 
(37) 

Note that in ref. 19 there is only one condition, because it is assumed that 
the two operators are dual. For the chiral Potts model, introducing new 
variables ~ j=  a j + l - ~ j  (mod N) is a duality transformation which inter- 
changes operators of the type ~o, -Yf~, but strict duality only applies when 
there are no twists. However, if both conditions (37) are satisfied, we do 
not need strict duality to obtain an Onsager algebra. 

We come now to the proof of (37). It is convenient to go to a 
representation where Xj is diagonal, for then it is shown in ref. 19 that the 
operator ~o may be written as 

L 

~o= F~ Mj (38) 
J = l  

where Mj is the diagonal matrix 

o 

M1 = (U - 3 )/2 
0 ) 0 ~ 

0 -- (N O- 1 )/2 

(39) 
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In this representation, ~ has Zj replaced by Xj, and we follow ref. 20 by 
writing 

X~=P~,j+ ptN ~,j (40) 

where P~,j is the upper triangular part of X~, and P~,j the lower triangular 
part of X f  k (raising and lowering operators). The basic commutation 
relations are 

[M+,Pk,+]=(N-k)Pkd, [M+,P~,j]=(k-N)P;,+ (41) 

and these may be used to prove the first of the conditions (37). The second 
follows from the following duality argument: Use the ZN commutation 
relations (29) to write the Dolan Grady conditions as a set of 
simultaneous cubic equations in the coefficients ~n, ~,. For either condition 
the equations have the same form. In addition, the coefficients en, ~n are 
identical in the superintegrable case. Therefore a proof of one of Eqs. (37) 
provides a proof of both. 

As demonstrated in ref. 7, the algebraic structure in the superintegrable 
case imposes an Ising-like structure on the spectra of associated operators. 
This structure was used by Baxter to find analytic solutions, in one par- 
ticular sector, using an inversion identity. (3) We have investigated whether 
Baxter's technique may be extended to other sectors which may involve 
twisted boundary conditions. There is in fact one such sector, but numeri- 
cal calculations indicate that it does not contain the ground state. We 
report briefly on these investigations here. 

First we recall Baxter's arguments. (3) Let F(aj, aj+ i, a}+ 1, aj) be the 
star weight shown in Fig. 6, with q' related to q by an automorphism. We 
note that this weight is periodic in each of the spin variables. It is shown 
in ref. 6 that if we choose q' so that 

aq,, bq,, Cq,, dq, = o) - s -  lbq ' a) Saq, ~ -Sdq,  Cq (42) 

where s is any integer, then 

F(ffj,(Tj+I, Gj.+I, Gj)=O if aj=a'j.+landaj<~aj~aj+,<~aj+N (43) 

Now introduce vectors u~, 0 ~< n < N, with entries, in the representation of 
(30), 

(un)~ = 6~,,~... 6~L,, (44) 

It follows from (43) that the subspace V spanned by the set un is invariant 
under the operator Tq Tq,. In the representation where Xj are diagonal 
matrices, there is a natural decomposition into "charge sectors" with quan- 
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~  l l . o  ~ 
_ \ _ / _ .  q 

1 aJ +1 
p ~(o,o) 

Fig. 6. Star weight for Eq. (43). 

turn number Q =Yj=IL aj (mod N). In this representation, a natural basis 
for V contains just one vector vQ from each charge sector: therefore vQ is 
an eigenvector of Tq Tq, for arbitrary q, and we have the functional relation 

2(q) 2(q') = gQ (45) 

where 2(q) is an eigenvalue and gQ may be computed from F(0, 0, n, n). 
Under the action of the family Tq, vQ generates an irreducible eigenvector 
whose eigenvalues all satisfy (45). (7) This may be solved to obtain all the 
eigenvalues in that sector. 

Now the automorphisms (42) are only a small subset of all possible 
automorphisms whereby q' may be obtained from q. We have therefore 
investigated numerically the possibility of obtaining identities similar to 
(43), and also low-dimensional subspaces which are invariant under Tq Tq,, 
for all automorphisms generated by the fundamental set R, S, T, U, given 
in ref. 8. The result is that when the length of the chain plus the twist in the 
boundary condition is a multiple of N-- that  is, L + n2i = 0 (mod N)--there 
is one other such subspace (and only one). It is spanned by vectors wn, 
0 ~< n < N, with components 

(w,)~ = 6~1,,6~2,n+16o3,,+ 2... 6~L,,+ L_ 1 (46) 

Although Baxter's method works in this sector also, it appears to contain 
the highest state rather than the lowest, and is therefore of little interest. 

4. C O N C L U S I O N S  

We have shown that the chiral Potts model may be formulated so that 
the rapidity lines carry a second integer variable--a 'twist' in the bond 
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crossing it. Here it was introduced explicitly via a change in book-keeping; 
alternatively, it may be regarded as a use of the automorphism T of Eq. (3). 
The effect is to change the entire spectrum of the transfer matrix, as, for 
example, the effect of introducing one antiferromagnetic bond in an Ising 
model. We have seen that those properties of the chiral Potts model which 
are essential in the analytic calculation of the eigenvalues remain when 
twists are introduced. The most important of these properties is the 
existence of hierarchies of functional equations satisfied by the transfer 
matrices. 

We have also shown that the superintegrable case with twists still 
satisfies the Dolan Grady condition, and therefore still has the Onsager 
algebra structure with resulting Ising-like properties. Unfortunately, there 
does not appear to be any simple extension of the special inversion identity 
used so sucessfully by Baxter (3) for the superintegrable model with periodic 
boundary conditions. However, the algebraic structure should still be of 
importance in any consideration of the superintegrable chiral Ports model. 
For example, this structure was used most effectively by Albertini e ta / .  (4'5) 
to make numerical calculations of ground state properties for very long 
chains, without explicitly diagonalizing the corresponding matrices. 

Finally, we mention that the formalism should be useful for consider- 
ing systems with twisted boundary conditions or with embedded interfaces. 
Of course, this is of no consequence in calculating bulk properties: 
however, it should prove to be quite important in investigations related to 
the theory of conformal invariance for the chiral Potts model, just as in 
similar investigations using the six-vertex modelJ 14 18) 
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